A Maximum Principle for Subharmonic and Plurisubharmonic Functions
نویسندگان
چکیده
منابع مشابه
Local inequalities for plurisubharmonic functions
The main objective of this paper is to prove a new inequality for plurisubharmonic functions estimating their supremum over a ball by their supremum over a measurable subset of the ball. We apply this result to study local properties of polynomial, algebraic and analytic functions. The paper has much in common with an earlier paper [Br] of the author.
متن کاملOn the Maximum Principle for Harmonic Functions
Some generalizations of the maximum principle for harmonic functions are discussed. §
متن کاملSeparately subharmonic functions and quasi-nearly subharmonic functions
First, we give the definition for quasi-nearly subharmonic functions. Second, after recalling the existing subharmonicity results of separately subharmonic functions, we give corresponding counterparts for separately quasi-nearly subharmonic functions, thus generalizing previous results of Armitage and Gardiner, of ours, of Arsove, of Avanissian, and of Lelong.
متن کاملPlurisubharmonic functions and their singularities
The theme of these lectures is local and global properties of plurisubharmonic functions. First differential inequalities defining convex, subharmonic and plurisubharmonic functions are discussed. It is proved that the marginal function of a plurisubharmonic function is plurisubharmonic under certain hypotheses. We study the singularities of plurisubharmonic functions using methods from convexi...
متن کاملFluctuation bounds for subharmonic functions
We obtain bounds for the angular fluctuations of a subharmonic function f(z) = R log |z− w| dμ(w) in terms of the distribution of the angular mean. This can be applied to study the regularity of subharmonic functions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Canadian Mathematical Bulletin
سال: 1992
ISSN: 0008-4395,1496-4287
DOI: 10.4153/cmb-1992-005-3